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The availability of commercial wearable trackers equipped with features to monitor sleep duration and quality has enabled
more useful sleep health monitoring applications and analyses. However, much research has reported the challenge of
long-term user retention in sleep monitoring through these modalities. Since modern Internet users own multiple mobile
devices, our work explores the possibility of employing ubiquitous mobile devices and passive WiFi sensing techniques to
predict sleep duration as the fundamental measure for complementing long-term sleep monitoring initiatives. In this paper,
we propose SleepMore, an accurate and easy-to-deploy sleep-tracking approach based on machine learning over the user’s
WiFi network activity. It first employs a semi-personalized random forest model with an infinitesimal jackknife variance
estimation method to classify a user’s network activity behavior into sleep and awake states per minute granularity. Through
a moving average technique, the system uses these state sequences to estimate the user’s nocturnal sleep period and its
uncertainty rate. Uncertainty quantification enables SleepMore to overcome the impact of noisy WiFi data that can yield
large prediction errors. We validate SleepMore using data from a month-long user study involving 46 college students and
draw comparisons with the Oura Ring wearable. Beyond the college campus, we evaluate SleepMore on non-student users
of different housing profiles. Our results demonstrate that SleepMore produces statistically indistinguishable sleep statistics
from the Oura ring baseline for predictions made within a 5% uncertainty rate. These errors range between 15-28 minutes for
determining sleep time and 7-29 minutes for determining wake time, proving statistically significant improvements over prior
work. Our in-depth analysis explains the sources of errors.

1 INTRODUCTION
Sleep is essential to one’s physical, emotional, and mental health. The National Sleep Foundation (NSF) recom-
mends between 7 to 9 hours as appropriate for adults to maintain general wellness [21]. However, sleep deficiency
is a common public health problem, with approximately 50 to 70 million Americans suffering from chronic sleep
disorders [3]. The risk factors associated with insufficient sleep are performance and cognitive deficits, and its
long-term effects are correlated with severe consequences such as obesity, stress, depression, and stroke [3, 21].
Thus, accurately determining sleep habits remains a topic of immense interest.

The gold standard for measuring sleep is using polysomnography (PSG), a multichannel, multimodal approach
performed in controlled environments like a sleep clinic by trained technicians. These factors make PSG challeng-
ing to use for day-to-day sleep monitoring. More recently, low-cost sleep wearable devices (e.g., FitBit, Jawbone)
[8, 12, 48] have become popular for sleep monitoring. However, wearables demand behavioral change in users
putting on the device to bed, which can cause reluctance for some [12]. To overcome the challenges of continuous
sleep monitoring on a longitudinal basis, researchers have explored contactless methods using radio, and radar
signals [22, 47]. However, the instrumentation of dedicated solutions in the building infrastructure limits their
support for scalability. Recently, using WiFi signals such as channel state (CSI) and backscatter information has
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been proposed as viable solutions for sleep tracking [59]. This is made possible by both smartphones becoming
common across most income levels [42] and WiFi solutions becoming prevalent in public, institutional and
residential locations [39, 43]. These solutions detect when the user has fallen asleep by checking for vibrations
and other signals. Unfortunately, they require custom hardware and are thus hard to deploy at scale, despite
yielding reasonable accuracy.

Smartphones have been used for sleep detection and monitoring. Prior approaches use smartphone activity as
a proxy for user activity and long periods of device inactivity to infer sleep periods. These approaches include
both client-side methods, based on monitoring screen activity [9], as well as network-side methods, based on
monitoring WiFi network activity of the device [28]. Since users tend to habitually use their mobile device before
they sleep and upon waking up, device activity, or lack thereof, is a feasible approach for detecting sleep periods
[54]. While prior work has shown the feasibility of such approaches, they are known to suffer from significant
errors, often more than an hour, when determining sleep time. These challenges motivate the need to develop an
accurate but generally accessible sensing approach that monitor users’ daily sleeping behavior without changing their
routines. Such functionality primarily contributes as a critical resource to the longitudinal requirement in almost
all sleep medicine studies, facilitating complete data collection of fundamental sleep measures in real-time.
In this paper, we present SleepMore, a practical approach to sleep monitoring using passive observations of a

user’s device WiFi activity. Our approach leverages the growing number of mobile devices owned by each user in
recent years (e.g., phone, tablet, laptop, e-readers) [10]. While smartphones remain the primary mobile device
for most users, they may use a combination of devices over the day (e.g., use a tablet to stream content prior to
bedtime and use the phone for other activities). We hypothesize that the higher errors of a single device sleep
detection approach [9, 28] can be minimized by observing network activity from all the user’s devices to infer
sleep and wake times accurately.
SleepMore collects network activity information of all devices directly from the WiFi access points (AP) as

features. Then, it employs a two-pronged technique, running both a random forest machine learning classification
and moving average estimation models to predict sleep duration. Specifically, it first classifies users in sleep or
awake states and computes confidence intervals for these predictions using an infinitesimal jackknife variance
estimation method. Outcomes with less than 95% confidence level are noted as low confidence predictions. From
applying a moving average, the most extended sequence of sleep states is observed as the user’s nocturnal sleep
period, with the start of the sequence denoting bedtime, 𝑇𝑠𝑙𝑒𝑒𝑝 , and the end of sequence denoting wake time,
𝑇𝑤𝑎𝑘𝑒 . Simultaneously, the uncertainty rate of this estimation is instanced by the number of low confidence
prediction states present in this sequence.
Our biomedical sleep research experts conducted an IRB-approved study over four weeks of an academic

semester during the COVID-19 pandemic restriction phase. Accordingly, we evaluate the performance of SleepMore
among 46 undergraduate students who resided on campus. We also conducted a small-scale user study among
three non-student participants to evaluate our system’s performance in home settings. As part of the study
protocols, student participants wore the Oura ring (gen 2) [36] wearable sleep tracker for baseline. They were
required to connect their devices to the campus WiFi while in their respective residences. While our study
specified no criteria on participants’ sleep habits, all users must own multiple personal devices. Participants were
a mix of habitual and irregular sleepers. They were asked to provide the MAC addresses of smartphones, laptops,
and tablets so that we could identify these devices directly from the WiFi infrastructure and extract their network
event logs. By default, all WiFi traces are anonymized. Our home participant chose to either provide diary logs or
use their personal Fitbit. They provided their WiFi network logs directly to us. To the best of our knowledge, this
is the first work to accurately predict sleep using a scalable WiFi-based technique using inputs from multiple
user-owned devices.
In designing, implementing, and evaluating SleepMore, our paper makes the following contributions:
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(1) We present a random forest ML-based algorithm with infinitesimal jackknife variance estimation and
moving average smoothing technique to predict users’ nocturnal sleep from WiFi network activity data
of multiple user devices in residential spaces. Our ML classifier can predict the state of a user as sleep or
awake and estimate sleep duration based on the most extended sequence of sleep states within a 24-hour
period. We employ the variance estimation method to measure how confident a prediction is being made,
flagging predictions beyond a 95% confidence interval as low-confidence outcomes and calculating the
uncertainty rate of sleep estimates by the number of low-confidence outcomes present in the sequence of
sleep states. These techniques accurately estimate a user’s sleep duration and determine their bedtime and
wake time.
• SleepMore is implemented as a cloud-based web service, building a semi-personalized model that requires
40% of users’ data for training, equivalent to 9 days of training data for 23 days of prediction.

• Predictions made within a 5% uncertainty rate range between 15-28 minutes of sleep error and 7-29
minutes of wake error, proving statistically significant improvements over prior work [28]. Note that
predictions within 5% uncertainty rate make up 80% of our predicted outcomes.

• Our system evaluation is supplemented with results comparing SleepMore to prior AI techniques. These
comparative analyses conclude conditions under which each technique would thrive in predicting sleep
using WiFi network data.

(2) We conduct an extensive experimental evaluation of SleepMore on the student population residing on campus.
Our results show that SleepMore can accurately determine the state of users sleeping with approximately
90% recall. These state predictions help to accurately estimate users’ sleep duration, bed and wake times.
• We extend our solution deployment to two residential setting. The models for home users are tested in a
cross-environment, utilizing students’ data as the training set. Our results demonstrate the feasibility of
SleepMore in real-world settings and with actual residents. Further, we provide insights into using smart
home devices that are increasingly present in homes and utilize WiFi connections.

• We characterize key factors that impact the performance of our approach, including the use of one to
many devices and the lack of training data to learn night-owl sleep schedules that did not often occur
among our participants.

Conclusively, SleepMore yields statistically indistinguishable sleep duration predictions compared to the
commercialized wearable trackers. However, it is essential to emphasize that our prediction mechanism of
estimating sleep duration is a partial function of the entire set of fine-grained features that Oura ring and similar
wearable sleep trackers can offer. In situations where sleep studies require regular data logging over an extended
period, SleepMore is competent as a lightweight supplementary tool without requiring users to wear a sleep
tracker or install a dedicated mobile app on their smartphone.

2 MOTIVATION AND BACKGROUND
This section provides background on sleep monitoring applications and sensing techniques, and motivates our
multi-device passive-sensing approach.

2.1 Sleep Health, a Call-to-Action
Much work has reported sleep deprivation as a public health burden [3, 38]. Researchers sought to understand the
reasons and consequences of insufficient sleep in different populations by measuring standard sleep parameters
such as time in bed, sleep duration, wake frequencies, and sleep latency [3, 26]. These studies have noted
insufficient sleep among adults as a result of lifestyles and work schedules [3], while adolescents’ sleep loss is
positively associated with more device use and online activities [49]. At the very least, sleep duration is documented
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as the most fundamental and critical predictor of different health outcomes with longitudinal associations to weight
gains [27], quality of life [35], cardiovascular illnesses [7], cognitive impairments [16], to name a few.

The paradigm shift of recognizing sleep as a critical predictor of significant health consequences [18] has led to a
fast-growing trend of consumer products offering digital sleep health options for monitoring and improving sleep.
From a research perspective, it has spurred a clear call to action for clinicians to comprehensively assess sleep
health among various age groups. Many of these works raised concerns over support for the basic understanding of
sleep, specifically, improving the effectiveness of sleep screening [3, 38] over longitudinal periods and developing
new technologies to accomplish this task [32].

2.2 Sleep Sensing Technologies
Sleep studies in clinical practice generally utilize retrospective scales, daily sleep logs, and/or polysomnography.
However, it is challenging for everyday consumers to personally monitor their sleep behavior with these
methods. Further, it remains highly burdensome for sleep studies to conduct long-term evaluation. Hence, sleep
technologies offer a low-burden approach to automatically detect a user’s sleep in the comfort of their own homes.
In a comprehensive study over two months, Massar et al. [29] compared and contrasted sleep measurements from
a consumer sleep-tracker, smartphone-based ecological momentary assessment, and user-phone interactions of
198 users. Their investigation identified stable interindividual differences in sleep behavior, underscoring the
utility of these modalities in characterizing population sleep and peri-sleep behavior. We discuss the pros and
cons of these options as follows:

(1) Contact-based wearables: Commercial alternatives have shown feasibility in monitoring sleep. Zam-
botti’s defined sleep wearable trackers as “over-the-counter, relatively low-cost devices available without
prescription or clinical recommendations,” [12] varying from wristbands to smartwatches, earbuds to
rings. The study protocol employing sleep wearables typically involves loaning these devices to enrolled
participants over a fixed duration for reusability in future studies. The implications of such practice could
result in behavior modification during the study. Specifically, users not used to wearing a device to bed and
raising the challenge of a high user attrition rate [12, 29, 61].

(2) Contactless sensing: Low compliance with wearables has motivated the design of contactless sensing
approaches. Examples include the use of cameras [23], RF or radar sensing to characterize sleep stages [47]
and posture [60]. Despite these advances, RF sensing systems have yet to accelerate commercial adoption,
while camera-based solutions are more likely to intrude on privacy interests.

(3) Smartphone-based sensing: By contrast, smartphone-based sensing arose as an option from the de-
veloping smartphone dependency [40] among everyday users, leading to researchers using the “phone-
as-a-sensor.” Efforts specific to sleep monitoring include distinguishing respiratory patterns through a
microphone [53] or inferring user sleep behavior from monitoring screen interactions and application
usage [2, 11, 17, 19, 31]. In all these cases, the solution presents a dedicated mobile application that must be
installed in users’ smartphones and its data acquisition running in the device’s background.

These works collectively underscore the advancement in sleep monitoring technologies. While promising,
much tension in utilizing the modalities above in sleep studies arises from the challenge of user retention. Massar
et al. describe designing an incentive structure to continuously encourage regular data logging across such
modalities over the study period. With many people operating e-devices for minutes to hours before actually
intending to sleep, we seek to establish an accurate and generally accessible sensing approach that monitors
users’ daily sleeping behavior without changing their routines. It is important to emphasize that our work aims
not to replace the utilization of existing modalities that can obtain key physiological measures. However, it is
positioned as a complementary mechanism to support sleep monitoring scenarios over longitudinal periods.
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2.3 Passive WiFi-based sensing
Attempts to bypass the high attrition rate in smartphone-based sensing led to the utilization of WiFi-based
passive sensing techniques. Prior work by Mammen et al. has shown that it is possible to use WiFi connection logs
through users’ single smartphone collected from the WiFi infrastructure to predict sleep [28], however yielding
only 88.50% accuracy. Separately, broader surveys on behavioral monitoring via smart devices have argued that
utilizing single-device for monitoring is not fully comprehensive, in part because of inadequate device coverage
from users owning multiple devices [40, 41, 55].
(1) Prior work only uses data collected from a single smartphone based on the assumption that users spend

most of their time online and on their smartphones [57]. We hypothesize that including all devices
owned by the user will significantly improve the accuracy of sleep detection.

(2) There is a significant gap between the accuracy of smartphone-based methods and those achieved by
sleep wearable trackers, which can achieve 96% recall at detecting sleep [4]. With this result in mind, it
is essential that our proposed solution, while using coarse-grained data source, achieves no statistically
significant difference from a wearable sleep tracker in order to serve its purpose. In this study, we
use the Oura Ring (gen 2) as a representative wearable device for sleep monitoring.

2.4 Design Rationale
Figure 1 shows an example of the network connection frequency for a typical user with multiple devices every
15-minutes through 24 hours between Day1, 6 pm to Day2, 6 pm. The observation that the personal smartphone
is the last device used before bedtime [54] makes it viable as a sleep monitoring sensor. However, users tend to
own multiple devices, and in this case, a secondary tablet device denotes the first active usage upon the user
waking up. This behavior presents practical reasoning to infer users’ sleep behavior more accurately through
multiple device usage. Hence, this work utilizes the WiFi network device activity collected from multiple devices
to estimate an individual’s nocturnal sleep duration over a longitudinal basis as the most fundamental feature
supporting sleep studies.

Fig. 1. Utility of smartphone and other devices before sleep and upon waking up. Low WiFi device activity from multiple
devices corresponds to a sleep behavior.

Specifically, it monitors the devices that are associated with the network to infer the user’s bedtime and
wake-up time (referred to as 𝑇𝑠𝑙𝑒𝑒𝑝 and 𝑇𝑤𝑎𝑘𝑒 ). Adding new user-owned devices is easy as they would only need
to be connected to the same WiFi network. In addition, our solution significantly preserves privacy as it does not
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require decoding the actual content of any packets sent by a device. For each user-owned device (denoted by
their MAC address), we capture the WiFi connection events that these devices make to the network and compute
the frequency at which each device establishes network connections.
The above example yields several critical insights: (1) The connection frequency increases with active online

device utilization and decreases with less utility. For example, we can observe the user displaying the highest
device use between 6-7 pm using a tablet. (2) A user also switches between four devices throughout the 24 hours,
highlighting the potential for a more comprehensive behavioral monitoring by expanding device selection. (3)
The user’s smartphone is the last device used before bedtime, but it is not always the first device used upon
waking up. (4) Further, network activity for other devices such as the laptop is observed to pick up soon after. (5)
While the frequency of connection increases with more device use, it is important to note that increased device
activity does not always imply a user being active in true nature. For example, it can occur from an application
on the device running automatic software updates or accepting notifications (e.g., incoming emails, received
online messages), as demonstrated by the user’s smartphone network connection log, which peaked between 4 to
5 am. These observations suggest that multi-device monitoring will lead to significantly better sleep prediction
than using a single device. Indeed, our results in Section 5 confirm our hypothesis.
It is important to emphasize that our approach aims to infer users’ sleep duration by estimating their sleep

and wake times, achieving robustness across users. The properties of utilizing a coarse-grained data source will
innately restrict our technique in predicting more nuanced sleep characteristics such as the REM stages of sleep.
Hence, our technique aims not to replace existing sleep-sensing modalities that offer fine-grained information
but instead complement the use of such modalities in supporting sleep monitoring, especially over long periods.

2.5 Key Systems Challenges
Our proposed approach demonstrates non-trivial challenges in using device network events as a sleep predictor,
as shown in Figure 2.

Fig. 2. Challenges predicting sleep with WiFi data.

2.5.1 Noisy Data. Prior work has discussed how noise in WiFi-sensing, such as ping-ponging of AP connections,
can negatively impact prediction performance [28]. In our case, the AP ping-pong effect is largely minimized
by limiting WiFi network data collection to within users’ residential premises. However, our system will still
be susceptible to other noise-affected errors. Specifically, our technique assumes that increased WiFi network
activity on a user’s device indicates the user is awake. It is also reasonable to assume a user interacting with
different devices before bedtime and upon waking up [15, 24]. However, this increased activity can be caused by

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 193. Publication date: December 2022.



SleepMore: Inferring Sleep Duration at Scale via Multi-Device WiFi Sensing • 193:7

device updates and app notifications that do not reflect the user’s actual physical state. For example, the user
is asleep at 3:00 am while the device updates or apps receive notifications (A). The variability of WiFi network
activities resulting from both user and device actions will, to a large extent, affect our technique’s ability to
accurately predict a user’s sleep duration.
Our system is designed to overcome these challenges by estimating the confidence intervals for predicting

sleep states throughout a 24-hour period. While sleep states with less than 95% confidence level are noted as low
confidence predictions, it continues to estimate the user’s nocturnal sleep duration based on the longest sleep
state sequence. However, it calculates the uncertainty of this estimation based on the number of low confidence
predicted states present in this sequence. We provide the details to our technique in Section 3.3.1.

2.5.2 Accurate Estimate of Bed and Wake Times. While it is not unusual for a person to use their device before
bedtime, it is also not unusual for a person to take some time to fall asleep after putting their device away [15, 24].
This duration is known as sleep onset latency and is estimated to be within 20 minutes. However, it also increases
progressively with age and electronic device-use [5, 20, 25]. In Figure 2, the user is predicted to sleep briefly
between midnight and 1:00 am before going back to bed at 2:00 am (A and B). Thus, the challenge is determining
the true start of a user’s bedtime. Further, the first predicted sleep state may not reflect that the user is falling
asleep. Conversely, the last predicted sleep state may not imply a user waking up (C and D).

This challenge informs our decision to estimate the user’s nocturnal sleep duration based on the most extended
sequence of sleep states, as mentioned above. Detailed in Section 3.3.2, we employ moving average to smooth out
short-term occurrences in wake states and highlight longer-term sleep trends over the 24-hour period.

3 SLEEPMORE DESIGN
This section presents our design of SleepMore as a multi-device WiFi sensing approach for sleep monitoring.
Figure 3 presents the system overview. We describe the implementation details as follows.

Fig. 3. SleepMore, a two-step process in predicting sleep states with confidence interval, and estimating bed and wake times.

3.1 Collecting WiFi Data Using RTLS
SleepMore requires WiFi data indicating when a user’s device(s) communicate on the network. We leverage the
real-time location system (RTLS) data feed available on commercial access points. For this paper, we collected all
our data from a university dormitory using Aruba WiFi APs, which support RTLS [33]. The RTLS feed provides
reports from every AP that sees a device communicating on the network. Each RTLS message contains the
following information:

Timestamp, Packet Age, Data Rate, DeviceType, Channel, DeviceMACAddress,
AssociationStatus, RSSI, Noise Floor, BSSID, MON BSSID
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SleepMore only uses data from associated client devices as those clients have legitimate access to the network.
In particular, we discard all data from unassociated devices as they are primarily WiFi probe requests from clients
roaming for a usable network. Note: while RTLS feeds can be used to track the location of WiFi devices, SleepMore
is only using this data as a proxy for device activity.

The RTLS reports are generated by all APs in our test environment every five seconds. However, these reports
will only list the WiFi devices that were active and seen by that AP (i.e., they were using the same WiFi frequency
as the AP and close enough to that AP) in that five-second interval. In particular, if a device has gone to sleep
(e.g., because the user is sleeping and the device is charging), the device will not be emitting any network packets.
It will not be seen and reported by any RTLS report generated by any AP.

3.2 Pre-processing Module
The first step in SleepMore’s pre-processing pipeline is to clean the noisy WiFi RTLS data. In particular, we remove
data with invalid timestamps or weak RSSI values indicating spurious transmission. We only retain records of
multiple device WiFi activities on days that users provide their Oura data (see Table 1 for data summary).

SleepMore’s features are generated from the RTLS Timestamp (records time at which a data message is received),
Device Type (client or AP station), Device MAC Address (client or AP station), and Association status (associated
or unassociated device) fields. Because a user could own multiple devices, each with their own MAC address,
SleepMore generates device features primarily based on the number of associated connection events per device
(i.e., networkEvents) and the unique AP (i.e., uniqueAPs) to which these devices were connected. We use the AP
to which the user’s device is connected as a feature for avoiding cases where a user is moving with a phone in
power-saving mode – in this case, the phone will not generate many network events, but the change of APs show
that the user is not sleeping. We assume that a device connects to just a single unique AP when a user is sleeping
– this assumption can be relaxed easily (by adding a set of APs into the feature set) in the rare cases where this
assumption is not true. In Section 5.1.2, we show that generating these features every one minute struck a good
balance between accuracy, computational overhead, and resilience to noise.

Fig. 4. Correlation heatmap of features extracted from multiple device WiFi network activities.
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Figure 4 shows the correlation values between sets of features (highly correlated features are darker in color
and have scores close to or exactly 1.0). We observe that for all device types (smartphone, laptop, tablet), the
number of unique AP associations (uniqueAPs) is highly correlated with the number of WiFi connection events
(networkEvents). In Section 5.2, we use these results to remove all highly-correlated features (i.e., unique APs
for all devices) and adopt a standard machine learning pipeline for feature selection. SleepMore’s final feature
selection uses importance weights, which is the number of times a feature is used in the fitted trees inside the
Random Forest classifier. As a last step in the pre-processing pipeline, it assigns sleep labels for our algorithm.
We binarize the users’ reported nocturnal sleep duration (i.e., Oura ring baseline) into sleep (1) or awake (0) states
at every interval.

3.3 Sleep Prediction Module
Figure 5 provides a high-level visual representation of the inner workings of our technique. It generates a set of
attributes from the user’s multi-device WiFi device activity logs collected every one minute between 𝐷𝑎𝑦1, 6
pm and 𝐷𝑎𝑦2, 6 pm. Using the features as input, the system first runs a machine learning algorithm to classify
a user’s state as sleep or awake, and calculates the respective prediction confidence. Then, it takes the longest
sequences of sleep states to define when the user is sleeping. In doing so, it applies a smoothing function to
the sequence of events and calculates the estimation uncertainty based on the number of low-confidence states
present in the sequence.

Fig. 5. High-level representation of our technique, receiving WiFi-generated device features as input to an ML classification
and estimate sleep through sequence of sleep states.

3.3.1 Machine Learning Classification with Confidence Interval. SleepMore produces a binary predictions of
whether the user is currently in a sleep (1) or awake (0) state. Section 5.1 compares several machine learning
techniques, including Naive Bayes (NB), Random Forest (RF), Extreme Gradient Boosting (XGB), and Long Short
Term Memory (LSTM) algorithms for this problem. We found that the RF and LSTM yield best results.

In RF, for b=1 to B=200 total trees, it draws a bootstrap sample from the training data. Then, it repetitively
grows a tree,𝑇𝑏 , from the bootstrap sample by randomly selecting d=5 features without replacement and splitting
the node using the feature that provides the best split until the desired node size is reached. As the algorithm
outputs the total ensemble of all trees to predict a state, 𝑓 (𝑥), it aggregates the prediction by each tree to assign

the class label, 𝑓 (𝑥) = 1
𝐵

𝐵∑
𝑏=1

𝑇𝑏 (𝑥), at every one minute interval. A great advantage to using random forest is that

the bagging technique helps reduce the variance of unbiased estimated prediction functions. However, our model
must grow deep trees to maintain a low bias and decrease prediction variance. This complexity may lead to less
interpretable results, especially in characterizing the statistical distribution of our predictions.
On the other hand, a 2-layer LSTM demonstrated comparable results to RF. The LSTM incorporates three

different matrices inside the recurrence, acting as a gating mechanism that allows for information flow from the
previous timestep as a function of the current one; an input gate (𝑖𝑡 ), a forget gate (𝑓𝑡 ) and an output gate (𝑜𝑡 ).
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Here,𝑤 and 𝑏 represent the weight and biases for gate, 𝑥 , neurons. ℎ𝑡−1 represents the output of the previous
LSTM block.

𝑖𝑡 = 𝜎 (𝑤𝑖 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 )
𝑓𝑡 = 𝜎 (𝑤 𝑓 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 )
𝑜𝑡 = 𝜎 (𝑤𝑜 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 )

These representations in a cell state, 𝑐𝑡 are combined with the memory vector for the current timestamp, 𝑐𝑡 , to
produce the hidden representation, ℎ𝑡 . Our final layer is a fully connected layer with a sigmoid activation and
one neuron. Where𝑊 is the weight connection matrix of the layer, the dense layer outputs, 𝑦𝑡 , the probability of
the event to be of state sleep or awake.

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐 )
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡
ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡 )
𝑦𝑡 = (ℎ𝑡 ∗𝑊 ) + 𝑏

Infinitesimal Jackknife Variance Estimation. To better determine the predictions our model is more confident about,
we use the infinitesimal jackknife variance estimation method proposed by Wager et al. [58]. The method takes
the covariance with respect to the resampling distribution to generate variance estimates, 𝑉𝐼 𝐽 , for all predictions.
That is,

𝑉𝐼 𝐽 =
𝑛∑
𝑖=1

𝐶𝑜𝑣∗ [𝑇 ∗ (𝑥), 𝑁 ∗
𝑖 ]

where 𝑇 ∗ (𝑥) is the prediction, 𝑥 , at tree, 𝑇 , based on the subsample𝑀∗
1 , ..., 𝑀

∗
𝑠 of size, 𝑠 , and 𝑁 ∗

𝑖 is the number
of times the original sample appears in the resample. This technique would down-weigh each observation by an
infinitesimal amount to estimate the variance of a statistic. However, since the variance estimate is calculated
with a finite number of trees in practice, it is inherently associated with Monte Carlo error. Our implementation
decreases this error by using a large number of trees and subtracting off the Monte Carlo estimate of variance
with bias correction. As suggested by Wager et al. [58], the unbiased variance estimate, 𝑉 𝐵

𝐼 𝐽
, is defined by:

𝑉 𝐵
𝐼 𝐽

=
𝑛∑
𝑖=1

𝐶2
𝑖 −

𝑠 (𝑛−𝑠)
𝑛

𝑣
𝐵

where 𝐶𝑖 =
1
𝐵

𝐵∑
𝑏=1

(𝑁 ∗
𝑏𝑖
− 𝑠/𝑛) (𝑇 ∗

𝑏
−𝑇 ∗), given 𝑛 is number of training examples, and 𝑣 = 1

𝐵

𝐵∑
𝑏=1

(𝑇 ∗
𝑏
−𝑇 ∗)2.

Finally, given the variance estimates, we find the sample mean prediction probability with a 95% confidence
interval by randomly sampling 1000 predictions per user. We labeled predictions with low confidence for those
outside the upper and lower confidence interval.

3.3.2 Sleep Duration Estimation Model. The outcomes from our ML model are a sequence of predicted states,
𝑆 = {𝑠1, ..., 𝑠𝑚} and their respective confidence,𝐶 = {𝑐1, ..., 𝑐𝑚}, every 24 hours (m = 1440 minutes). By putting all
binary state predictions together, we can conceivably determine a user’s nocturnal sleep period for that 24-hour
cycle by choosing the most extended occurrence of sleep states (Figure 2A). This nocturnal sleep period could
include brief awake states as it is not unusual for a user to wake up once or twice during the night. However, our
consideration toward the most extended sleep period, specifically during the night, may perversely overlook
short sleep states that can occur between long awake states as in Figure 2B.
Thus, the system component requires solving an estimation problem to accurately identify both a user’s

bedtime (𝑇𝑠𝑙𝑒𝑒𝑝 ) and wake time (𝑇𝑤𝑎𝑘𝑒 ) using the series of predicted binary states. We compare two different
estimation techniques for this problem: predicting with moving averages (i.e., MVA) and smoothed aggregation
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(i.e., AGG). Both prediction methods build on the hypothesis that a user is more likely to be predicted in a sleep
state when their past events assert that they were sleeping and vice versa.
(1) Predicting with Moving Averages (MVA): When using MVA, SleepMore will provide sufficient weight to past

states in the predictor to reduce the probability of predicting an awake state when a sudden burst of WiFi
activity occurs amid a nocturnal sleep period (e.g., a background app notification). Instead, it will require
a series of steadily rising WiFi network device activities to change the prediction from asleep to awake.
Similarly, valuing the past awake states as an additional predictor would reduce the model predicting a
sleep state when WiFi device activity briefly dips (e.g., the user leaves home for a short time).

(2) Smoothed Aggregation (AGG): Another approach is by applying AGG whereby we total the sum of predicted
sleep states over a larger observation window. For example, by considering predicted sleep states over a 30
minutes window, we produce a range of prediction states that will likely contain a 95% confidence level of
the user’s state we are interested in. We smooth out the representation by applying a Savitzky-Golay (SG)
filter [46] to determine the most extended sleep period. With this smoothing, even brief sleep episodes, as
shown in Figure 2B, will be considered as part of the user’s sleep period. Then, we can determine the start
of the most extended sleep period as 𝑇𝑠𝑙𝑒𝑒𝑝 and the end of the period as 𝑇𝑤𝑎𝑘𝑒 .

Our comparison on the performance of these estimation methods found MVA worked best in Section 5.3.
We empirically determined the sliding window,𝑊 = 5, based on the achieving optimal performance. For each
sequence of states, we calculate the moving average at time period, 𝑡 , as:

𝑀𝑉𝐴𝑡 =
𝑠𝑡+𝑠𝑡−1+𝑠𝑡−2+...+𝑠𝑊 −(𝑡−1)

𝑊

If 𝑠𝑡 , 𝑠𝑡+1, 𝑠𝑡+2, ..., 𝑠𝑇 is a sequence of sleep states, our model identifies the longest continuous sequence as the
nocturnal sleep period for that 24-hour period. The start of a sleep period corresponds to the first occurrence of
sleep states, 𝑇𝑠𝑙𝑒𝑒𝑝 = 𝑠𝑡 . The end of a sleep period corresponds to the last occurrence of a sleep state within the
longest sequence 𝑇𝑤𝑎𝑘𝑒 = 𝑠𝑇 .

3.3.3 Use of UncertaintyQuantification to Address Noisy Data. Recall in Section 2.5, our technique must overcome
system challenges that are mainly attributed to noisy WiFi data; for example, device-specific activities do not
reflect the user’s actual physical state. To handle spurious events, we implement uncertainty quantification,
which carries forward the prediction confidence in our ML model. Specifically, we define all prediction states:

𝑐𝑚 =

{
0, if prediction mean within 95% CI
1, otherwise

(1)

Accordingly, we calculate the rate of estimation uncertainty instanced by the number of low confidence
predictions within the sequence, 𝐶 = {𝑐1, ..., 𝑐𝑚}. As will be discussed in Section 5.3, the degree of tolerable
uncertainty can be specified and only days with uncertainty less than that threshold are considered. In our
case, our analysis found approximately 80% of our sleep estimates within 5% uncertainty rate, thus, regarding
sequences with more than 5% uncertainty rate as spurious sequences.

3.3.4 Cloud-based Implementation. Our models are built with Python, and the ML component is implemented
using Keras with TensorFlow backend, scikit-learn and forestci libraries [1, 37, 45]. The ML model is trained with
a combination of a general dataset and 40% of the user’s data, thus semi-personalized. SleepMore is built as a
cloud-based web service, where the training of a semi-personalized model and testing of new data using random
forest are completed in a matter of seconds. However, quantifying the uncertainty through the infinitesimal
jackknife method is typically more expensive than obtaining the random forest.
As our results will show in Section 5, the performance improvement using LSTM did not reach a significant

difference compared to RF. While LSTM achieves a 3% increase, this improvement is at the expense of precision
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and overall accuracy. Since RF is less computationally expensive, our solution is best suited to RF with infinitesimal
jackknife method. Nonetheless, it should be noted that LSTM as another classification technique is applicable.

4 USER STUDY
To evaluate SleepMore, we conducted an IRB-approved study, with all participants providing written informed
consent before participating. Table 1 summarizes our participants’ data.

4.1 Procedure and Participants
Our primary user study involved 46 students in on-campus university dormitory housing. Participants were
recruited in batches between March-May 2021, and data collection was 4-weeks for each batch. The study took
place during the COVID-19 pandemic. During this time, there were some restrictions regarding group size
gatherings. As part of these restrictions, students attended their lessons online while living in their on-campus
dormitories.

In designing this study, our expert sleep researchers fully considered altering the procedure to its bare minimum.
It should be noted that sleep studies with gold standard polysomnography (PSG) are typically conducted under
conditions where the user’s sleep is not interfered with. Having a diagnosed sleep disorder was an exclusion
criterion during recruitment; however, there were no criteria for habitual sleep duration or times. Participants
included both regular and irregular sleepers with varying sleep habits. Participants were required to own multiple
devices, install a dedicated data logging app on their smartphone and actively maintain the diary log. With
preserving user privacy in mind, log entries are limited to collecting only sleep and wake times, not reporting
wakeful activities at night.

Users, N 46 (23 Male, 23 Female) Batch, n #1 = 6, #2 = 8, #3 = 7,
#4: 6, #5 = 6, #6 = 13

Age 20 - 28 years old, mean: 21.95, stdev.: 1.43 Year 44 undergraduates, 2 graduates

Study duration 4 weeks per user % of time
spent asleep ≈ 12-20% of the day per student

Sleep summary
Bedtime: 12:00 am - 5:30 am (mean: 1:47 am),
Wake time: 5:30 am - 1:15 pm (mean: 8:29 am),
Sleep duration: 195 - 660 mins (mean: 401 mins)

Residence
Self-contained student housing
estate, with 30 blocks
segregated into 7 residences

Oura baseline 14 - 24 days (mean: 17 days) Devices
tracked

WiFi network activity data of
1. smartphones, 2. laptop, 3. tablet

Table 1. Data summary of student participants in the primary user study.

Upon consent, participants met at the start of the study to collect an Oura ring (gen 2) sleep wearable tracker
for baseline sleep data; their participation was staggered in six batches. Participants also attended a one-time
in-lab clinical assessment to assess their sleep health. Following standard sleep study procedures, participants
fulfill a list of questionnaires, including the Beck’s Anxiety Inventory [50], Beck’s Depression Inventory [51], and
Berlin Questionnaire [34]. These questions were as sanity checks for us to be aware of their health states. All
participants were in good standing in their mental health self-reports. Similarly, we identified no students with
sleep apnea based on the Berlin questionnaire.
Throughout the study, participants were encouraged to utilize their on-campus residence WiFi frequently.

We recorded all the MAC addresses of students’ personal smartphones (Android or iOS), laptops, and tablets.
For students who owned iOS-based smartphones, they received a study-issued Android-based smartphone with
a preinstalled data logging app. We use the WiFi MAC addresses of their devices to extract the RTLS data of
our participants. Note: by default, the MAC addresses in the RTLS data are hashed. Thus, we only identified
individual users after explicitly providing us with their MAC addresses. At the end of the study, all study-issued
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devices were returned, and each participant received compensation of up to USD 18.12 weekly in cash if they
fulfilled all study requirements. These requirements include: (a) regularly wearing the Oura ring and logging
their sleep, (b) installing the required data logging app on their smartphone, and (c) using the campus WiFi while
in their dorms.
We extracted WiFi network activity data for all user-owned devices for the days when their Oura baseline

data and self-reports were correct and available. Note: the distribution of sleep and awake states for each user is
highly imbalanced as users spent approximately 20% of the day sleeping.

𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟1 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3
User Male Female Male

Residence Single-family house Apartment
Household Family with children Couple no children

Study duration 1 month 1 week
Devices tracked smartphone, laptop smartphone (personal), laptop (personal), smartTV, smart-speaker
Sleep baseline Diary logs Fitbit + Diary logs + lights off log

Sleep summary

Bedtime: 12:00 am
Waketime:
6:00 am (weekday),
7:00 am (weekend)
Sleep duration: 360 mins

Bedtime: 11:20 pm -12:45 am
(mean: 11:46 pm)
Waketime:
5:30 - 8:00 am
(mean: 6:39 am)
Sleep duration: 290 - 480 mins
(mean: 376 mins)

Bedtime: 11:15 pm - 12:30 am
(mean: 11:37 pm)
Waketime:
5:40 - 8:00 am
(mean: 6:45 am)
Sleep duration: 310 - 450 mins
(mean: 372 mins)

Lights off - Weekday: 11:00pm, Weekend: 11:30 pm
% of time
spent sleeping 25% of the day 26% of the day 25% of the day

Table 2. Data summary of home participants in the supplementary user study.

To demonstrate the applicability of our approach among other populations, our study expands to include
non-student users living in different private home settings, albeit on a smaller scale. The sleep baseline data
for this set of participants is based on their preferred choice of a diary log and/or (their personal) Fitbit device.
These logging modalities have also proven reliable for sleep monitoring purposes [12]. Fitbit provides similar
functionalities and data files as the Oura ring. Unlike student users, home participants directly provided us with
their WiFi event logs in a .csv file. Additionally, 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 provided the logs of their share smart home devices.
We summarize the demographic profiles of our home participants in Table 2.

4.2 Sleep Baseline
Each student participant wore an Oura sleep sensing ring as baseline sleep data to compare against SleepMore.
Students were asked to select an Oura ring size that was most comfortable. Our home participants used their
personal Fitbit, also equipped with similar features. These wearables estimate sleep using heart rate, HRV (heart
rate variability), body temperature, and movement via infrared photoplethysmography (PPG), temperature sensor,
and a 3-D accelerometer signals [4]. Participants were instructed to wear their devices (both during the day and
night) and sync the data to the Oura/Fitbit app daily. From this cloud data, daily sleep measures such as bedtime,
wake time, time-in-bed (TIB), wake after sleep onset (WASO) as well as thirty-second epoch by epoch sleep
stages data (wake, light, deep, and REM) were extracted using the respective cloud API. Note: we only use the
wearables as a baseline and not as ground truth for medically approved sleep studies requiring highly invasive
and expensive polysomnography.
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To ensure the baseline sleep data was correct and reliable, we used the sleep summary file containing only
duration and time information and the hypnogram file containing wake and sleep stages every 30 seconds.
Additionally, we used self-reports to check the alignment of sleep and activity data with self-reports.

Practical Challenges. First, insufficient battery power and missed opportunities to wear the device often led
to inaccurate sleep estimation among our students – this is a common challenge faced in many sleep studies
[3, 13, 29]. Second, the Oura ring was not equipped with a nap detection feature at the time of the study. A
common but small observation among our students was that some morning naps were regarded as a continuation
of nocturnal sleep (mismatch between sleep summary and hypnogram). Due to discrepancies and inadequate
ground truth to validate these occurrences, we made the operational decision to exclude training our model for
nap-like sleep. Approximately 10% of all data points exhibited this pattern. Hence, we excluded data if there is a
mismatch in sleep timings between these three resources. Given a month’s participation per student, the data
exclusion rate from inaccurate reportings ranged between 7% to the highest of 50%. We excluded no data from
home users.

4.3 Ethical Consideration
A key consideration in this work is preserving users’ privacy while still being functional. In practice, WiFi
data can reveal many aspects of users’ private information. SleepMore is designed to keep user privacy in mind
by collecting coarse-grain network activity. As such, SleepMore only uses network data without knowing the
corresponding user activity for accessing WiFi or location information derived from approximating AP locations.
In addition, SleepMore will only provide user-specific sleep predictions if the user explicitly provides the MAC
addresses of their devices. It is important to note that network activity data of student devices were directly
collected from the campus infrastructure and bounded by the computing agreements agreed to by each user
when they received their WiFi credentials. Without these MAC addresses to user device mappings, SleepMore can
still produce sleep results at aggregate levels but without attributing results to users. Aggregated results remain
helpful as they can provide a good health status overview of an entire home or residential dormitory without
needing to identify individual users.

5 EVALUATING SLEEPMORE
We evaluate the performance of SleepMore using the dataset collected from our primary user study. We conduct
our model evaluation through a leave-one(user)-out cross-validation. As will be explained later, we build a
semi-personalized model where a model for each user is trained using 40% of their data. Using all but the user’s
data as part of the training set, we repeat this process five times, where each training time includes a different
set of random samples (of the test users) to build the semi-personalized model. We present the accuracy, recall,
precision, and F1 scores (weighted average of precision and recall).

5.1 Efficacy of ML Models
Our first evaluation compares the efficacy of different algorithms at predicting sleep and awake states in 24 hours.
Building on prior findings [28], we contrast the performance of Naive Bayes (NB), Random Forest (RF), and
Gradient Boosting (XGBoost) sampling features at every 15 minutes interval. As shown in Table 3, a generalized
model using random forest yields the highest accuracy of 79.30% in classifying sleep states.

5.1.1 Model Personalization. Next, we compare the difference between using generalized and personalizedmodels
where the personalized models were trained using a portion of the test user’s data. Overall, the personalized
models improve model performance by a small but significant percentage. As shown in Table 4, using 10% training
data to build a per-user model improves model accuracy by ≈ 3% compared to a generalized model (p<.01).
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Algorithm Accuracy (Acc) Precision (Prec) Recall (Rec) F1 p
NB 0.538 0.394 0.833 0.521 p<.01
XGBoost 0.775 0.719 0.425 0.498 p<.01
RF 0.793 0.693 0.582 0.624 -
RF (tuned) 0.798 0.713 0.574 0.625 p<.01

Table 3. Model efficacy with different ML algorithms, and random forest yielding best results.

Train Acc Prec Rec F1 p
General 0.798 0.713 0.574 0.625 -

+ 10% user 0.825 0.751 0.632 0.681 p<.01
+ 20% user 0.835 0.761 0.666 0.706 p<.01
+ 30% user 0.844 0.771 0.682 0.720 p<.05
+ 40% user 0.851 0.788 0.697 0.736 p<.05
+ 50% user 0.858 0.795 0.714 0.750 p>.1

Table 4. Training data for RF model personalization.

Frequency Acc Prec Rec F1 p
15 minutes 0.851 0.788 0.697 0.736 -
30 minutes 0.815 0.731 0.625 0.666 p<.01
10 minutes 0.872 0.817 0.746 0.777 p<.05
5 minutes 0.906 0.860 0.824 0.840 p<.01
1 minute 0.939 0.896 0.905 0.900 p<.01
45 seconds 0.92 0.876 0.887 0.880 p>.1
30 seconds 0.926 0.875 0.888 0.878 p>.1

Table 5. Sample frequency for RF semi-personalized model.

Fig. 6. Personalization improves sleep prediction.

Recursively adding 10% of training data slightly improves the model accuracy by ≈ 1%. However, the performance
improvements did not achieve a statistical difference beyond 40% training data.
Model personalization also helps to improve recall – the probability that a sleep state is correctly predicted.

Figure 6 illustrates the prediction outcomes for user P23 over a night. With 40% training data, recall and overall
accuracy improved by 3% and 90% compared to a generalized approach (88%).

5.1.2 Sampling Frequency. Another key input to SleepMore is the WiFi network activity data sampling rate. In
Section 3.1, we explained that the RTLS data frequency ranges from every 5 seconds to several minutes depending
on device use. Guided by prior work [28], we investigate the performance improvements at different WiFi data
sampling rates of 30 seconds to 30 minutes. Our analysis, shown in Table 5, found that reducing 15 minutes
sampling frequency up to 1 minute significantly improves the overall model performance and recall by ≈ 10%.
Further decreasing the sampling rate to 45 or 30 seconds has a slight statistically insignificant performance
reduction. Thus, we used a WiFi sampling rate of 1 minute.
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5.1.3 Model Tuning. The inner workings of our chosen classification algorithm random forest use multiple
decision trees for decision-making. Fine-tuning our model yields ≈ 94% accuracy, although it is not statistically sig-
nificant compared to the default model. Several essential parameters for tree-based classification algorithms are the
number of trees (n_estimator) and the number of data points placed in a node before it is split (min_samples_split)
to improve overfitting. We iteratively optimized the hyperparameters of our model using grid search to reduce
bias in calculating the variance estimates n_estimator=200, and min_samples_split=5.

5.1.4 Efficacy of DL model. Our implementation of LSTM begins with a single layer and progressively adding
layers to achieve a robust model. Similarly, we used the ten features described in Section 3.2, sampled at 1-minute
interval, as the input to the model, and incrementally increased the adjacent samples (i.e., timestep) from 5 to 30
minutes intervals to predict each instance. For example, we set the “lookback period” to every 10 minutes of data
in the past to predict the upcoming sample.

Model Accuracy (Acc) Precision (Prec) Recall (Rec) F1 p
LSTM-5T 0.859 0.841 0.602 0.702 -
LSTM-10T 0.832 0.763 0.676 0.717 p<.01
LSTM-15T 0.858 0.791 0.661 0.720 p<.01
LSTM-30T 0.928 0.879 0.883 0.881 p<.01
LSTM-2 0.930 0.863 0.913 0.887 p>.1
LSTM-3 0.921 0.866 0.876 0.872 p>.1

Table 6. Comparing SleepMore with LSTM network.

Table 6 summarizes the model performance, first, on a single-layer LSTM model with ten hidden layers, 32
samples in each mini-batch, and an epoch size of 5, with varying timesteps. We set the dropout and recurrent
dropout rates at 20% as a starting point. Where recall is prioritized, the model yields the best results of 88.3%
recall and 92.8% accuracy at 30 minutes time step.

Fig. 7. Value of cost function decreases with
epoch size for P10. Fig. 8. Confusion matrix comparison between RF and LSTM for P10.

The subsequent addition of an LSTM layer (i.e., LSTM-2) and fine-tuning improve recall. However, we quickly
observed declining performance with a third LSTM layer. As the LSTM model is slower to train, we implement a
grid search for LSTM-2, attending to the following hyperparameters: lstm and recurrent dropout rates, epoch,
and batch size. With the optimal hyperparameters at lstm_dropout=0.01, recurrent_dropout=0.2, batch_size=64,
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and epoch=5, a two-layer LSTM model yields best performance at 91.3% recall, increasing recall by 3% compared
to a single-layer LSTM. However, this difference is not significant. Figure 7 charts the value of cost function,
that is, the error between predicted values and true values, over the entire training set for an example user, P10.
Contrasting model performance with RF, we plot the confusion matrix for the same user in Figure 8.
While promising, the average performance improvement using LSTM was only on the recall measure and is

not significantly different from the RF algorithm. This minimal improvement did not justify building a complex
model that is also computationally expensive compared to an RF model. Many applications utilizing LSTM
networks have proven successful on large amounts of training data (e.g., months and years) to detect patterns
of residential and student life behaviors [6, 56]. Until our application has collected much more data to build
classifiers that compare the upcoming sleep duration for the day to the sleep histories of the same days in previous
weeks/months, we reckon using the RF algorithm at this stage for our system to function adequately. We discuss
our continuing effort for sleep prediction using LSTM in Section 7. Note that our results are based on the RF
algorithm in the experiments moving forward.

5.2 Benefit of Using Multiple Devices
A key hypothesis of this work is that using data collected from multiple devices owned by a user will lead to
better sleep prediction than using just a single device. To test this hypothesis, we compare the accuracy of using
multiple devices versus a single preferred primary device. A preferred device, in this case, is a smartphone, utilized
most frequently [57].

Device Type No. of Users with Device (%) % WiFi activity per day
Smartphone 46 (100%) 47.30%
Smartphone (study) 13 (28%) 27.10%
Laptop 39 (85%) 35.19%
Tablet 10 (22%) 33.26%

Table 7. Multi-device connection to WiFi per day.

Table 7 summarizes the percentage of time different user-owned devices were connected to the WiFi network.
In particular, smartphones were owned by 100% of our users and connected to the monitored WiFi network ≈
50% of the time. Note: the monitored network was only in the dorms; users were probably elsewhere the rest of
the time. Laptops (owned by 85% of our participants) were connected ≈ 35% of the time.

5.2.1 Performance of Multi-Device Features. Figure 9 shows the importance of all features based on our model’s
fitted trees. The F-score for feature importance is measured in terms of weight, that is, the number of times
the feature is used in a tree. Intuitively, a high F-score (1 being the max) reflects how important the feature is
independent of other features. This analysis revealed that using the sum of network events across all user-owned
devices had the highest F-score compared to using events only from smartphones or tablets.

Fig. 9. Feature importance.
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Feature Accuracy Precision Recall F1 p-value
Smartphone 0.893 0.860 0.781 0.812 -
Smartphone + 1 secondary device 0.911 0.851 0.863 0.855 p<.01
Smartphone + multi devices 0.939 0.896 0.905 0.900 p<.01

Table 8. Performance with different device features.

Table 8 compares the model performance with different device features. Using just smartphones yields a 78.10%
recall and 89.30% accuracy. However, adding more than two user device features increases recall by more than
10% and overall accuracy by 4% (p<.01). The results strongly suggest that using multiple devices will improve
SleepMore’s accuracy and recall.

5.3 Efficacy of Sleep Estimation
With the classification component determined, SleepMore now has to interpret the classification results. In
particular, given a continuous prediction of sleep and awake states, SleepMore must now accurately predict the
start and end of a user’s sleep period (𝑇𝑠𝑙𝑒𝑒𝑝 , 𝑇𝑤𝑎𝑘𝑒 ) and the sleep duration.

5.3.1 Choice of Smoothing Technique. Unfortunately, coupling the confidence interval for each predicted outcome
does not provide a straightforward solution to determining a user’s sleep duration. For example, a typical
representation is depicted in Figure 10 where we observed most sleep states with low confidence spuriously
occurring between 1:00 am, and 7:00 am. Ignoring the first and last occurrence of low confidence predictions
does not directly translate to estimating the start and end of a sleep period. For these reasons, we described two
techniques to estimate sleep timing based on the most extended sleep period in Section 3.3.2: predicting with
moving averages (MVA) and smoothed aggregation (AGG). Instead, confidence values will be used to quantify
the uncertainty rate of an entire sleep duration prediction once it is estimated.

Fig. 10. Predicted states with confidence level for P10.

MVA determines a sleep or awake state by gradually moving the window, defined by the threshold interval,
over the predicted outcomes in single increments. Then, we determine the most extended sleep period from the
revised outcomes. In AGG, we total the sum of every few sleep states, defined by the threshold interval, and
smooth out the representation by applying a Savitzky-Golay (SG) filter [46].
Table 9 tabulates the mean error in users’ sleep period with varying window sizes. The errors of 𝑇𝑠𝑙𝑒𝑒𝑝 and

𝑇𝑤𝑎𝑘𝑒 are calculated as the difference in time between our sleep estimates and the users’ Oura ring sleep baseline
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reference. We observed that using MVA with a rolling window size of 5 to 20 minutes hovered between 39 to 41
minutes in estimating 𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒 errors. However, with AGG, errors fluctuate in a more extensive range of 42 to
95 minutes. With SleepMore achieving the lowest mean errors in single increments of 5-minutes (regardless of
method), we adopt this window size for the MVA estimation method moving forward.

Method W=5 W=10 W=15 W=20 p-value
𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒 𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒 𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒 𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒

MVA 39 37 39 37 40 37 41 37 p<.01
AGG 47 42 65 56 80 66 95 78 -

Table 9. Comparison of errors in minutes using two estimation methods on predictions with varying window size (W).

5.3.2 Improving Performance with Uncertainty Rate. These errors thus far include the presence of sleep estimates
with significant uncertainty. Recall in Section 3.3.2 that the uncertainty rate is instanced by the number of states
predicted with low confidence. We consider only sleep estimates with less than 5% uncertainty to improve the
system’s performance, making up roughly 80% of our prediction samples.

Fig. 11. Sleep estimation error in minutes at varying uncertainty rates. Fig. 12. Prediction sample distribution.

Figure 11 charts our estimation errors with varying uncertainty rates. Sleep estimations made within 1%
uncertainty yielded the lowest errors of 15 minutes for sleep time and 7 minutes for wake times. Estimates made
within 5% uncertainty achieved an average error of 28 minutes sleep time and 29 minutes wake time. As the
tolerance threshold increases, the technique “filters” out more days with an uncertainty rate higher than the
threshold and provides higher accuracy. This mechanism results in a tradeoff where the number of days made by
a prediction depends on the tolerance. The higher the tolerance, the more the cost of higher errors.
In keeping the threshold within 5% uncertainty, SleepMore retains 80.6% of its prediction outcomes. As per

Figure 12, most of our predictions are made within 0.02-0.05 uncertainty rate range, thus, excluding 95 of 490
outcomes. Restricting the threshold to 1% retains 12% of these outcomes.

5.4 Summary of Findings
In its present form, SleepMore predicts users’ sleep states by employing a fine-tuned semi-personalized (using
40% of a user’s data) random forest classification model and infinitesimal jackknife variance estimation method
to produce confidence intervals. We collected, on average, 17 days of data per user in our data collection study –
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thus, six days’ worth of user data would be used for training. Our approach samples WiFi-generated features
from multiple user devices every minute. In practice, SleepMore does not need to sample WiFi data for the entire
day consistently; instead, it simply needs to sample during reasonable sleeping periods every day (i.e., at the
very least from 8 pm to the following morning on weekdays with afternoons added on weekends). We provide
quantitative evidence to strongly suggest that using multiple devices will improve SleepMore’s accuracy and
recall. Finally, using MVA-5 with a rolling window size of 5 minutes yielded the best results in estimating the
longest sleep period. The sleep errors range between 15-28 minutes and wake errors range between 7-29 minutes
within a 5% uncertainty rate.

6 COMPARATIVE ANALYSIS
This section focuses on the sleep estimates produced by SleepMore with different devices, including the Oura ring,
chosen as a dedicated sleep tracker in our primary study. We draw comparisons to understand its performance
with varying sleep behaviors and tested our system in a home setting and prior work utilizing AI techniques.

6.1 SleepMore and Smart Devices
6.1.1 WiFi Data fromMultiple Personal Devices. Table 10 breaks down our sleep estimation errors using anMVA-5
method by summarizing the complete statistics with WiFi data from varying personal devices. We observed that
the errors occurring most often were 5 minutes for bedtime and 1 minute for wake time. However, the mean
values and standard deviations tend to increase with lesser user devices, reiterating the value of adding more
devices to achieve accuracy in sleep monitoring.

Smartphone + multi devices Smartphone + 1 device Smartphone only
𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑊𝑎𝑘𝑒 𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒 𝑇𝑠𝑙𝑒𝑒𝑝 𝑇𝑤𝑎𝑘𝑒

Median 7 7 18 15 21 27
Mean 17 21 31 32 42 37
Max 182 177 211 403 301 253
Min 0 0 0 0 0 0

Mode 5 0 5 1 5 1
Stdev. 27 32 35 47 49 43
Q1, Q3 5,16 2,26 6,43 4,42 8,58 3,51

UIF, UOF 33, 51 63, 100 99, 156 99, 156 134, 210 123,195
Table 10. Summary statistics of sleep and wake estimation errors with varying devices in minutes.

Fig. 13. PDF of sleep error with varying user devices. Fig. 14. PDF of wake error with varying user devices.
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A probability density function view of the estimation errors in Figures 13 and 14 also suggest that the outliers
were a small fraction of the predictions with more devices used for monitoring. Sleep errors were reduced
significantly with more than two secondary devices compared to using one smartphone (p<.01) and two devices
(p<.01). Wake errors did not significantly improve by adding a secondary device compared to using a primary
smartphone (p>.1) but significantly improved with multiple secondary devices (p<.01).

6.1.2 Contrasting the Oura Ring. Table 11 summarizes the average descriptive statistics for the sleep durations
measured by both the Oura ring and predicted by SleepMore for the data collection study participants. The
differences in these two distributions were statistically insignificant (with p>.1). In particular, both modalities
measured that 50% of the participants sleep for at least 400 minutes per day while the total population was
measured to sleep for at least 600 minutes, as shown in Figure 15.

Key Takeaway. For SleepMore to remain useful as a complementary tool in long-term sleep monitoring, our
model performance must match that of the Oura ring. Our findings recommend using multiple personal devices
for the system to produce the most accurate predictions.

𝑂𝑢𝑟𝑎𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑙𝑒𝑒𝑝𝑀𝑜𝑟𝑒𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
Median 404 430
Mean 400 426
Max 680 641
Min 240 210

Mode 428 428
Stdev. 75 67
Q1, Q3 358,448 389,471

UIF, UOF 582,717 594,718

Table 11. Descriptive statistics for Oura ring and SleepMore. Fig. 15. Sleep duration CDF by Oura and SleepMore.

6.2 Robustness Across User and Sleeping Habits
The following analysis seeks to understand how robust SleepMore is to different types of users and their habitual
sleep patterns. As stated in Table 1, our student participants’ average bed and wake times are 1:47 am and 8:29
am, respectively. However, there were outlying records of sleep behaviors where students reportedly went to bed
at 5:30 am and woke up at 1:15 pm.

6.2.1 Circadian and Night Owl Phase. Figure 16 charts participant P4, who typically slept at 1:25 am (stdev. 36
minutes) every night, corresponding to a normal circadian phase. For the entire 12 days that P4 provided useful
Oura data, SleepMore predicts them getting approximately 7 hours of sleep on average, thus maintaining a regular
sleep pattern [44], such as on Day 7. This includes Day 11, when they significantly shifted their usual sleep time
– even so, SleepMore predicted their sleep duration within 30 minutes sleep time error (and 29 minutes wake time
error, totaling 59 minutes).
A separate example is participant P37, as per Figure 17, whose average bedtime clocked at 2:09 am (stdev. 1

hour 08 minutes). On average, participant P37 received 5 hours 30 minutes (stdev. 1 hour 12 minutes) of sleep
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Fig. 16. Comparing Oura and SleepMore for P4. Top charts sleep duration difference in minutes.

Fig. 17. Night owl sleep schedule by P37, identified to maintain an irregular sleep schedule.
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during the study period. Unlike participant P4, we identified participant P37 as an irregular sleeper [52], adopting
a mix of habitual night owl [30] and normal circadian sleep schedules. On Day 11, P37 received approximately 3
hours 30 minutes of sleep. Even with this large shift, SleepMore predicted their sleep duration with less than 18
minutes of sleep time error.

6.2.2 Disruptive Sleep Event in an Irregular Sleeping Pattern. Figures 18 and 19 show the difference in our model
performance for two users, P24 and P27. Note that the disruptive sleep events (bottom chart) were each an
anomaly of their habitual sleeping habits. SleepMore can accurately predict sleep on days that users display
regular sleep patterns. However, a disruptive event that leads to the user sleeping late would cause significant
errors at this stage.

Fig. 18. Model performance is affected by disruptive sleep event (bottom chart) for a regular sleeper, P24.

Fig. 19. Model performance is affected by disruptive sleep event (bottom chart) for a regular sleeper, P27.
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Fig. 20. Considering the most extended sleep period perversely overlooks split-like sleep behavior for P9.

A primary reason for outliers is the lack of training data, specifically for bedtime hours well past midnight
and before dawn. We counted only 30 samples (equivalent to less than ≈ 5%) of (all) students’ data points who
slept beyond 4:00 am throughout the four weeks. Additionally, these data points were mainly attributed to
P37 (above), whose semi-personalized model accurately predicted their irregularities. As a result, P24 and P27’s
semi-personalized models had not learned to predict these outcomes. In similar cases where users did not regularly
sleep in the early morning hours, the average bedtime error is within 115 minutes, and the wake time error is
within 70 minutes.

6.2.3 Wake Events Amid Nocturnal Sleep. While our system is modeled to detect nocturnal sleep, SleepMore
can handle the detection of wake states at per minute granularity from disruption of WiFi events occurring
amid long sleep periods. As per Figure 20 for P9, detecting continuous wake states occurring over an hour
negatively affected SleepMore’s ability to estimate sleep duration that is more accurate to the ground truth.
Instead, SleepMore registered their wake time to be 9:35 am, despite a continuing sleep period between 11:00 am
to 1:00 pm. Considering the longest sleep period can generally help improve overall performance (see Figures 10
and 18 for P2 and P24), but it can perversely overlook other sleep period that comes soon after the wake period.
Note, as we explained in Section 4, our sleep baseline only considers nocturnal sleep (meaning a split-like sleep
behavior would be consider these split events as a whole).

Key Takeaway. Indeed, a significant challenge foreseen in our approach is determining a user’s bedtime and
wake time by monitoring coarse-grained WiFi features. Our estimation method values sleep states made in the
last 5 minutes to predict each user’s upcoming sleep/awake state and takes the most extended sleep period as the
nocturnal sleep duration. The system is robust to regular and irregular sleepers. However, it does not handle
unexpected disruptive sleep events from regular sleepers as well, primarily since it currently lacks samples of
users sleeping at dawn. Further, considering the most extended sleep period can impact our model performance,
especially among users who exhibit split-like sleep behavior.

6.3 Home-Use Applicability
These evaluations thus far have focused on our primary user study among on-campus student residents. One
question that remains unaddressed is SleepMore’s performance in a private home setting. In what follows, we
tested SleepMore in a cross-environment. That is, the semi-personalized model for each home participant is built
using students’ WiFi sleep dataset (the primary study) but with 40% of their data.
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Fig. 21. Classification of sleep states and measure
of dispersion for 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟1.

𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟1 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3
Accuracy 0.986 0.988 0.991
Precision 0.977 0.983 0.986
Recall 0.975 0.978 0.982
F1 0.976 0.980 0.984

𝑇𝑠𝑙𝑒𝑒𝑝 (<=1%) 6-8 mins
(mean: 6 mins)

4-11 mins
(mean: 6 mins)

1-17 mins
(mean: 6 mins)

𝑇𝑤𝑎𝑘𝑒 (<=1%)
1-28 mins

(mean: 8 mins)
1-27 mins

(mean: 7 mins)
1- 4 mins

(mean: 2 mins)

𝑇𝑠𝑙𝑒𝑒𝑝 (<=5%) 2-5 mins
(mean: 3 mins)

24 mins
(1 sample) -

𝑇𝑤𝑎𝑘𝑒 (<=5%)
3-19 mins

(mean: 8 mins)
6 mins

(1 sample) -

Table 12. SleepMore’s performance and errors all within 1%
uncertainty rates in a private home setting.

Figure 21 plots the classification of sleep and awake states using their semi-personalized random forest model
for 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟1. Respectively, we plot the standard deviation of each prediction (square root of the variance),
giving us a better idea of the disparity of data from one another. As summarized in Table 12, our model achieves
an overall performance of 98.6% accuracy and a high 97.5% recall in predicting sleep states. The effect of these
predictions leads to our estimation model producing between 2 to 8 minutes of sleep error and 1 to 28 minutes of
wake error. the evaluation yielded similar results for our home users sharing the same residence. Note that all
predictions were estimated within a 3% uncertainty rate; therefore, no outliers were removed.

In a traditional sleep setting, ‘lights off’ signals a person’s intention to sleep. However, the intention to sleep to
actual sleep time (sleep latency) is one measure that varies across persons. To examine potential discrepancies, we
compared the time difference produced by our system with𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 and𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3’s lights off logs and sleep
baseline. As per Figure 22, using ‘lights off’ as a point of reference for sleep produced between 24-90 minutes time
difference for our participants compared to the Fitbit wearable, with the largest differences occurring over the
weekend. The time difference between our system and ‘lights off’ ranges from 14-69 minutes. It should be noted
that while our system cannot detect sleep onset latency with coarse-grained information, the time difference is
considerably less against the Fitbit compared to lights off.

6.3.1 Utility of Smart Home Devices. These results thus far have shown promise in utilizing WiFi data from
personal devices. We emphasize personal devices because much work has proven that these device types are a
reasonable proxy for estimating user behavior. However, with the increasing use of smart home devices today,
we briefly investigate their impact on our model performance. Smart home devices, although shared, are almost
guaranteed to be connected to home WiFi networks. Table 13 presents the performance difference for𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2
and 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3, respectively. In removing features generated by smart home devices, our model performance
improves overall accuracy but with insignificant difference (p>.1). Note, however, no one prediction was made
beyond 1% uncertainty rate.
It is essential to highlight the following attributes in considering the relevance of our results. First, for many

people, the second-nature action of switching off the TV every night before bed makes it more reasonable to
approximate user states. Equally, this behavior may not be true for users who habitually leave their TV on during
bedtime. In this case, our users are a couple with similar sleep hygiene who did not exhibit a pattern of leaving
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Fig. 22. Time difference of SleepMore with lights off and sleep
baseline.

𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3
Accuracy 0.991 (+1.9%) 0.993 (+0.2%)
Precision 0.991 (+0.8%) 0.989 (+0.3%)
Recall 0.978 (+0%) 0.986 (+0.4%)
F1 0.984 (+0.4%) 0.988 (+0.4%)

𝑇𝑠𝑙𝑒𝑒𝑝 (<=1%) 2-7 mins
(mean: 4 mins)

5-8 mins
(mean: 6 mins)

𝑇𝑤𝑎𝑘𝑒 (<=1%)
1-26 mins

(mean: 6 mins)
1-8 mins

(mean: 4 mins)
Table 13. Performance difference with and

without shared device features.

Fig. 23. Model performance on device usage for 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 and 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3.

their devices running through the night. Second, they displayed similar sleep schedules, with one person shortly
sleeping and waking up after another. Monitoring WiFi network data from their smart TV and speaker made
little impact on our model performance, whether at night or in the morning. Where this condition does not hold,
monitoring WiFi data from shared devices will be less straightforward for sleep monitoring.
One way to accommodate the nuances in users’ digital device practices is by distinguishing each device

as primary, secondary, or shared use, assigning weights based on utilization frequency and time of day. By
operationalizing feature extraction in such a way, we could more accurately determine the user utilizing a shared
device. For example, Figure 23 charts the combined use of devices for 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟2 and 𝐻𝑜𝑚𝑒𝑈𝑠𝑒𝑟3. While both
users shared the same device practice through the night, it is unclear who was operating the smartTV, and smart
speaker from 10 am onwards. For SleepMore to extend its capability in estimating daytime naps, detecting who is
awake while utilizing the device during the day will be crucial to our model development.

Key Takeaway The primary objective of this secondary study is to demonstrate the applicability of our system in
a private home setting, albeit on a different time scale and different sleep baseline. While the insights we derived
were based on a limited observation window, we show how our technique is adaptable to different residential
settings as long as users connect their devices to a dedicated WiFi network when at home. In a shared setting,
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we distinguish a user based on their personal devices’ MAC addresses and can singularize different occupant’s
behavior based on their individual list of personal devices.

6.4 Performance Comparison Against Prior Work
Our final analysis compares SleepMore’s performance against a system implementation of three unsupervised
learning techniques by prior work [28]. Similarly, we evaluate the performance of these models using leave-one-
out cross validation.

Technique Acc Prec Rec F1 𝑇𝑠𝑙𝑒𝑒𝑝 error in mins 𝑇𝑤𝑎𝑘𝑒 error in mins
SleepMore 0.939 0.896 0.905 0.900 15-28 (<= 5%) 7-29 (<= 5%)
Ensemble based 0.787 0.586 0.891 0.707 139 175
Norm. Prior 0.799 0.600 0.919 0.726 190 109
Hier. Prior 0.814 0.622 0.914 0.740 193 111

Table 14. Comparison with prior techniques and our sleep estimation errors within 5% uncertainty rate.

Mammen et al. uses WiFi connection data obtained directly from the WiFi infrastructure. The comparison was
made against three Bayesian change point detection methods using WiFi device activity from all devices (i.e.,
all_networkEvents feature), looking at the rate of change of values in a single variable time-series data; normal
prior [14], hierarchical prior [11], and an ensemble of normal, uniform, and hierarchical priors [28]. The authors
found that techniques using only a hierarchical prior or a normal prior are useful when users have regular sleep
patterns and the data is not subjected to too much noise. However, basic profiling of users is required to best
decide on these priors. An ensemble model accommodates the irregular sleepers, including a uniform prior model,
the normal prior model, and the hierarchical prior model.
Building on these findings, we employed the system developed by Mammen et al.[28] on our primary study

dataset. Table 14 summarizes the performance comparison based on our primary study (student participants’
data) and shows that SleepMore achieves significantly better accuracy, recall, and precision (p<.01). A plausible
explanation for the change point detection models failing is the absence of location information. Specifically,
the amount of WiFi network activity we calculate every minute does not consider changes between places
and only checks for a coarse residential location. The above change point detection techniques are suitable in
situations where we have no access to the training data and want a high-level understanding of users’ behavior
in a residential location. However, when we want to do more fine-grained analysis and have access to training
data from multiple devices, SleepMore can provide more accuracy.

Key Takeaway.While earlier work similarly utilizes WiFi connection data to predict sleep, two main differences
set our work apart: First, these works relied solely on single-device monitoring through users’ smartphones.
Second, change point detection is employed in prior work to determine sleep from changes in WiFi event rates in
different locations.

7 DISCUSSION AND LIMITATIONS
Our study’s objectives were to develop a sleep prediction solution that can accurately predict sleep by monitoring
WiFi device activity for multi-user devices. Here we discuss the implications of our findings.

7.1 Assessing Type of Sleep Characteristics
We provide evidence of our technique producing key sleep characteristics comparable to the Oura ring, such
as bedtime, wake time, and sleep duration. A clear limitation of utilizing a coarse-grained data source is the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 193. Publication date: December 2022.



193:28 • Zakaria et al.

inability to differentiate the four sleep stages (i.e., Deep, Light, REM, wake) and sleep onset latency. Currently,
only estimation of bedtime and wake time is possible with SleepMore. Hence, it should be emphasized that our
technique aims not to replace existing sleep-sensing modalities that offer fine-grained information but instead to
complement the use of such modalities in supporting sleep monitoring, especially over longitudinal periods. At
present, the training for our model is notably restricted to nocturnal sleep cycles. The operational challenges faced
in our user study (see Section 4) hindered our progress in experimenting with predicting nap times (note: today,
the software update in wearable sleep trackers are equipped with nap detection). With SleepMore’s capability
to detect awake and sleep states at per minute granularity, the system could conceivably detect different sleep
patterns, including polyphasic and split-like sleep behavior. Our estimation technique, at present, smooths out
wake events amid a sleep period at a fixed threshold, thus requires implementing dynamic thresholding in setting
naps and split-like sleep behavior for different users.

7.2 Extending to Different User Populations and Device Types
The main population target for this study is students and a smaller scale of full-time working professionals with
regular work schedules. However, different populations might exhibit different sleep patterns. While students
have the flexibility to adjust their sleep schedule to academic/social demands by sleeping during the day, most
daytime workers have to follow nighttime sleep. Sleep patterns might be highly irregular in shift workers or
patients with insomnia, which our model development has not accounted for in this phase.

Nonetheless, the cross-environment model development of on-campus student residents to home participants
exemplifies the feasibility of supporting large-scale sleep monitoring in family dwelling units. Although the
supplementary home study was a minor scale, it should be noted that our home participants were not in a
single-living environment. Thus, it is feasible to extend sleep prediction for other family members/occupants by
singularizing each user’s sleep predictions based on their dedicated list of personal devices.We emphasize ‘personal
devices’ because these devices (in our study and similar prior work) have shown to effectively approximate user
presence and activity.
We learned from our home study the promise of monitoring WiFi data generated from shared information

appliances such as smart TV and smart speakers, which are almost guaranteed to be connected to home WiFi
networks. However, the practicality of using these devices grows with increasing complexity when more people
share the device. It will also pose as an issue when extending SleepMore to detect daytime naps, requiring the
model to learn the user more likely to be using the device based on their routines. This is where the personalization
of device feature weights may be relevant.

7.3 Improvements to Handle Corner Cases

Fig. 24. Outlier with large error.
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Finally, Figure 24 exemplifies an error our system encounters that could be attributed to multiple variables and
conditions. In fact, it is common for devices to stay connected to the WiFi for activities such as software updates,
music/video streaming during the night. As previously suggested, one possibility to reduce the impact of these
device features in sleep prediction is assigning different weights to each device as a separate feature.
Further, under conditions where SleepMore is utilized as a complementary tool over long-term observations,

a feasible way to correct sleep predictions with large errors is by supplementing historical data from another
sleep tracker modality to train a user’s semi-personalized model continuously. This is also where our work
continues with the LSTM implementation, briefly presented in Section 5.1.4. Months of training data will allow
us to experiment with building a classifier that compares sleep prediction the following day to longer historical
sequences. Instead of using WiFi network event features extracted per day, we can couple our model input with
WiFi network data of users over weekdays, weekends, and calendar events, tailored to their device habits and
sleep routines. Current work relied on the trial-and-error method for model architecture and hyperparameters.
Extension to this effort can include employing more sophisticated optimization approaches for better model
configuration.

8 CONCLUSIONS AND FUTURE WORK
This work proposed SleepMore as a promising, low cost and easily scalable supplementary solution to commercial
sleep trackers for long-term sleep monitoring in residences such as dormitories and homes. SleepMore uses a
supervised learning and estimation model that leverages WiFi device activity, collected directly from the WiFi
infrastructure from multiple user devices to predict sleep. It does this in two steps; First, it determines if a user is
in a sleep or awake state every minute using a random forest semi-personalized model. For each state, the model
employs an infinitesimal jackknife variance estimation method to calculate the confidence for each prediction,
noting down every state with low confidence. Second, it processes these sequences of sleep and awake, using a
moving average to estimate the user’s bedtime and wake times. It determines the uncertainty rate of a nocturnal
sleep estimate instanced by the number of low confidence states present in this sequence. Our validation used
data collected from 46 participants living in on-campus dormitories, predicting sleep states with a high recall of
≈ 90% recall. This performance renders sleep duration estimations within 15-28 minutes sleep time error and
7-29 minutes wake time error, henceforth proving statistically significant improvements over prior work. We also
demonstrated the application of SleepMore in private home settings and provide insights into the utilization of
shared home devices. A detailed comparative analysis highlighted the importance of multiple user devices to
accurately estimate sleep duration and the robustness of SleepMore at predicting sleep measures across different
users with different sleep patterns and regularities. As future work, we plan to incorporate SleepMore into a
scalable solution for on-campus health and behavioral risk surveillance to help college students at risk of sleep
deprivation and related issues.
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